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Fuel Cell Task Assignment

Contract DA-49-186-502-ORD-860

Revised Scope of Work - ORDTL-CB-762

j HARRY DIAMOND LABORATORIES

Task 1 - Energy Transformation Systems

Conduct theoretical and experimental investigations to define

Lthe mechanisms and control parameters of gas diffusion electrodes in
fuel cells. Work will include, but not be limited to

1. Establish a mathematical model of the overall diffusion

process including terms for contributions of known mechanisms in

porous media.

2. Develope expressions for contributing mechanisms which

contain the physical properties of the reactants and products, and

the physical properties and geometrical parameters of the electrode.

3. Conduct experimental work to verify the mathematical model.
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1.0 SUMMARY

Previous work on mass transport limitations of porous gas diffu-

sion electrodes (1) was extended to consider the case where the

j penetration of the electrolyte into a single cylindrical pore is

greater than the radius of the pore so that the liquid inthe pore

can be considered a semi-infinite cylinder.

An elliptical cbncentration profile was used in this work to

represent the composition in the gas-liquid interface. The major

assumptions of the model are:

1. Single pore of uniform circular cross .section.

2. Electrolyte penetration much greater than pore radius.

3. Instantaneous, complete, and irreversible reaction at
surfaces wetted by electrolyte.

4. No reaction at dry surface.

5. Cylindrical symmetry.

6. Gas-liquid equilibrium at the interface.

The results of this work indicate that the maximum current

density supportable by mass transfer is greater in the case of a

semi-infinite cylinder than that deduced for a semi-infinite

annulus. For an oxygen-water system this model predicts a maximum

current density of 5.1 amps/cm
2 at the optimum radius of 2.15 x 10 - 6

cm; for the semi-infinite annulus a maximum current density of 1.45

amps/cm2 occuring at an optimum pore radius of 1.86 x 10-6 cm was

found.

1
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iIt was found that for a pore penetration of one pore diameter,

dissolved gas reaching the pore walls wetted by the electrolyte

amounted to 99.3% of the gas crossing the gas-liquid interface.

This result indicates that a penetration on only one pore diameter

is sufficient to make the semi-infinite cylinder the effective

-model.

1!
I
I



I

I2.0 INTRODUCTION

] The model of a porous gas diffusion electrode controlled by

mass transfer which was the subject of a previous rep-T-f-(l) has

]been modified to consider the case where the electrolyte penetrates
an appreciable distance into the pore so that the cylinder of

liquid electrolyte inside the pore can be considered semi-infinite

Iin length.'

The approach of considering the several steps involved in

the total electrochemical process to be in series has been main-

tained. Furthermore, instantaneous and irreversible electron

4transfer at the reactive site, and no back diffusion of reaction
products have been assumed.

The model under consideration in this investigation assumes

that the inner pore walls become reactive when they are wetted by

the electrolyte. Essentially all of the other assumptions of the

14 preceeding report are considered applicable to the present model.

The principal objective of this work was to determine the

bonditions under which the current density resulting from the flow

of oxygen through a single cylindrical pore into a semi-infinite

cylinder of non-volatile electrolyte (which in other respects was

4 assumed to act like water) was a maximum. Another objective was

to determine the extent of penetration which would validate the

assumption of the semi-infinite reactive cylinder.

3



3.0 MASS TRANSFER IN A POROUS ELECTRODE

3.1 Description of the Model

The model which was the subject of this work can be described

j as follows:

Pure oxygen flows through a pore of uniform circular cross-

section by a combination of Poiseuille and Knudsen flows (surface

flow is treated separately), followed by diffusion through a plane

gas-liquid interface located in the pore due to the penetration of

the electrolyte into the pore. The penetration of electrolyte into

the pore is sufficiently great so that the electrolyte in the pore

Imay be considered a semi-infinite cylinder; in principle the pene-

tration is much greater than the radius of the pore. The reactive

area is assumed to be that part of the pore wall which is wetted by the

1electrolyte. The oxygen diffuses from the gas-liquid interface to
the pore walls where an instantaneous and irreversible electro-

4chemical reaction occurs. It is further assumed that the reaction

products do not affect the diffusion field of the dissolved oxygen.

3.2 Flow of Oxygen in a Pore

The flow of gases through a pore of small diameter may be des-

1cribed by three different mechanisms each of which prevails at
different gas pressures.

1. Poiseuille flow is bulk flow due to a pressure gradient and

occurs when the diameter of the pore is very much larger than the

Imean free path of the molecules of the gas.
4
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2. Knudsen flow, occurs when the diameter of the pore is smaller

than the mean free path of the molecules of the gas.

When the diameter of the pore is of a magnitude comparable to

the mean free path of the gas molecules, both Poiseuille and Knudsen

flows must be considered.

3. Surface flow is due to the migration of adsorbed molecules

owing to a concentration gradient on the surface. The contribution

to the total flow of this phenomenon is negligible for a pore diameter

of the order of the mean free path of the molecules of the fluid (9)

and will be neglected in the mathematical analysis of this model.

However, the same type of correction as the one discussed in a pre-

vious report (1) would be applicable for the case where the surface

flow could not be neglected.

3.3 Flow of Oxygen Through the Interface

jAriet and Distefano (4) cited experimental evidence in support

of the thesis that the resistance of the gas-liquid interface to the

Idiffusion of oxygen could be neglected under the flow conditions of
these models. Therefore, the oxygen on the liquid side of the

interface was considered to be in equilibrium with the oxygen on

]the gas side.

j 3.4 Diffusional Transport in the Liquid

The transport of the oxygen molecules from the gas-liquid

interface to thereactive surface is caused by the concentration
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gradient of oxygen in the liquid inside the pore. Whenever a difference

in concentration of a solute exists between two points in a dilute

solution there tends to be a motion of molecules of the solute from

the point of high concentration to the point of low concentration.

This motion can be expressed mathematically by Fick's first law

NC A-
=- A AB7. 3.4-1

where NAz is the flux of solute A in the z direction, DAB is the

diffusivity (or the diffusion coefficient) of A in B, and is a

measure of ability of A to move through B. It is a function of the

size and shape of the molecules of solute and solvent, the tempera-

ture, and the physical state of the system. C is the concentration
A

of A in the solution.

3.5 Assumptions of the Mathematical Model

IThe steady-state equations of motion describing the flow of

oxygen from the gas phase to the reacting surface were formulated for

a single cylindrical pore based on the following assumptions:

1. The distance which the electrolyte penetrates the pore is so

much greater than the radius of the pore that the liquid in the pore

jmay be considered a semi-infinite cylinder.

2. The concentration of dissolved oxygen at the interface is

a function of the radius defined and discussed in a previous report (1).

See page 9, B.C. III.

I
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3. There is no reaction on the pore surfal-face ac>t wetted with

electrolyte.

4. There is instantaneous, complete, and bAd irrev.ersible reaction

on the surface wetted with electrolyte,,

[45. The density of the gas and the diffusBissivity of the gas in

the liquid phase as well as the viscosity of thed-he gas are considered

to be functions of temperature only.

6. In the liquid phase, the oxygen is trsTransported by ddffusion

only.

7. The model posseses cylindrical symmet r-ltry, i e., no gradients

in the angular direction.

8. The gas phase consists of a pure gas, In tlais investigation,

the calculations are based on pure oxygen.

9. The electrolyte is non-volatile. Inca other 3espects the

properties of the electrolyte are assumed to be 9 e ident ical with those

of water. This assumption obviates any counterir-idiffus iTon of electrolyte

vapor in the gas phase.

10. For the mass transfer rates of this D invest igation, at the

interface, the oxygen in the gas phase is in eq qnuilibr-UM with the

oxygen dissolved in the liquid. The validity ofocf this assumption has

been demonstrated in an earlier report (1).

11. The flow of gas by surface migratin (tm is ne_-ligible. This

assumption was shown to be valid for the conditilJtions O f this model by

the work of Wengrow (9).

1
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3.6 Formulation of the Mathematical Model

3.6.1 Flow From Gas Phase to Gas-Liquid Interface

Gas-Liquid
Bulk Interface

GasLiquidGas z0

Figure 1. Schematic Diagram of Physical Model

The equation which describes the flow of oxygen from the

bulk gas phase to the gas-liquid interface is the same that was

Adeveloped by Ariet and Distefano (1).

N 273b -i . 1 F1.0133 xl10, 2 RP R /2R
NAzPG T L 22,400 327 3 4R5 3r1 6-

~mol1
where NAZIG = flux of A in the pore, in the gas phase, cmZsec

T - absolute temperature, K

Pb,P, - denotes pressures in the bulk gas and at the gas-liquid

b i interface, respectively, atm.

P -Pb+Pi - mean pressure, atm.
•, 2

7) viscosity, poises
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R = radius of the pore, cm

R1 = ideal gas constant,

M - molecular weight of the gas, gi.

i 6 constant defined by Carman (4)

3.6.2 Flow From the Gas-Liquid Interface Through the Liquid

Ariet and Distefano showed that the equation describing the

motion of the gas from the gas-liquid interface, through the liquid,

to the reactive site is Laplace's equation in cylindrical coordinates.

2C l 
2c

___A + 2CA CA 3.6-2

This equation is to be solved subject to the following boundary condi-

tions which can easily be deduced from the assumptions of the model.

B.C. I At z:O and r=R, CA(R,z) = 0

B.C. II At r>0 and z-, CA(r,-) = 0

B.C. III At =O and r R,.CA(r,O) = CA [1_ (1)2

If we apply the finite Hankel Transformation (9) to equation 3.6-2

we obtain

- A ~~)C 0 3.6-3

where C A rC(r,z) Jo(ajr)dr 3.6-4

and a. is defined by the following equation

J o(a R) 0 3.6-5
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The solution of equation 3.6-3 is

CA f Ae-'JZ + Be'JZ 3.6-6

If we apply B.C. II, then B = 0 and

-A Ae- 3.6-7

If we apply B.C. III and the definition of the finite Hankel Trans-

formation, we have at z 0,

CA A rC 01-(!)2] Jo(jr)dr 3.6-8

and since this integral is independent of z, we obtain, for any value

of Z,

A= cA e' ijz4  q r O)2 Joa=r)dr 3.6-9

Now, let us consider the definition of Sonine's integral (2), where m>n>-I

2
m- n -,I  n

Jm(X) 2 mf(mn J(xt)tn+l (1-t2)m-n dt 3.6-10

and if we let t = R' dt = -a, ajR = x, n = 0 and m = 3/2, then

equation 3.6-10 becomes

(.R) 2(R)3/2 R ( j r) dr 3.6-11

3/2 3 2 3 /2r(3/2) [ RR R r R

J31 (ajR) = 2(ajR)3/2R R < - E)2 )k J0 @ar)dr 3.6-12

3/I /2(/)



If we compare the integrals in equations 3.6-9 and 3.6-12 we

see that they are equal, therefore

cO -Xz 23/2 £(3/2)R

CA 2(ajR)3/2 J 3 / 2 (ciR) 3.6-13

Now we can apply the definition of the inverse finite Hankel Trans-

formation (P)

C A 0 ~A2 3.6-14
A 1L _ Jl(% R) 2

to equation 3.6-13 we obtain

Jo .r) e-j 23/2 (3/2) R 2
CA 2°= L(R] 2 )32 J 3 2 (cjR) 3.6-15

or 03

3/2o00 e-a
z  J(Jr) J3/2 (a i R)

C 23/2 r (3/2)CAL (¢¢R)3/2 Co '2 3.6-16

j=l -j I

Since (2) r (3/2) = (7T/4

an, since (2)

/(R) = os(R)) 3.6-17

3/2 r ( jR'

- then equation.3.6-16 becomes

CA -az J (or.r) 2 ' n a
0A CA 0 1-cx. -Cos a.3.6-18
C- A C aR) Ll(ajR) R

Differentiating partially with respect to r we obtain

OC A 007 eaz 1 (al~ir)J (sin c-R CsaR

~~- C -- 2 -j(.) [() 2~ c - co 3.6-19
Ij=1 "
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and, if we evaluate this function at r = R, we obtain

Ar- = e °  . cos ajR

2 Cr1 j- _!(__jR 1 j 3.6-20
A (aR 2 1 (aR) xj

3 Since the tocal flow in the r direction-at r = R from z = 0 to z = z

is given by~I zz

N 2q-TR dz 3.6-21
W do ArIEJjz=0Ir=R

and since N. 3.6-22
r=R r=R

then

(0) i Cos aR)f -a jZdz 3.6-23
z=0 L (aiR)2 jl(c) a j

j=l

•~ ~ ~ ~~ i _ a Cgjg) /snC'Pos a..,

S =~7 e1 j ) C ' a ct'R) 3.6-24
ii rz=0 ' -,.j (%,] i:o R

j=

GOr sin Ccos a.

-3.6-26

-- :2-

:2=0. P,),j ( a ) I (UR.) J)

:acan sac tho.u " ,srt m u -s of this series become zero when

.,,C.,.c .. .":: : . ,Lnae electrolyte penetrates the pore an

i~ifirnita diszanc. ' -- in c cR .62

I..-,, /o

co ,,--. - i ..,' 
'  

0 .]

1O. l2~ j362



13

and since by equation 3.6-5, (a jR) are defined to be the zeros of

the Bessel function of order zero, let (jR = Xn, then

sitn x Cos x,
W *R A 3 A 2 3.6-27

= _n J=(xn) Xn Jl(xn

P4 This series was evaluated in the following manner; the f.rst

ten terms were summed by an exact computation from a table of the

zeros of Jo. The terms from n = 11 to n = 20 were summed by applying

the following approximations which were found to be extremely accurate

for the purpose of this investigation (less than 1% error).

For n>10(6)

Jl(X) 2 ( cos (x - 7 3.6-28

and for n>10 ("5)

4 r:n - ±) 3.6-29

2

henceJ X ( 3.6-30

2 ,Knn-l
9~co 2 (-1)n-

~7r 7T) _ _ _ _ 3.6-31
(n-1/4) (n-1/4)

Now cos n cos (r1(n-l = (-)n cos Z = 3.6-32
-* n , r 3.6-3

sin x = sin 7(n-i/4) (- sin * 3.6-33

then equation 3.6-27 becomes

L 3 n-i 21
L." z(- (n-l/4 ) 1)

1/

2 2 i nn- -AS(n-/4) (l)-
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100 OD4RC A  0.54261 +F

z= DAB " 2  7 2 L(n.1/4)5/2 n i-/4)3/2 3.6-35

000

+ 21 I7 7i 3.6-36+ ) /2 3 

2 n= =Z i7,-1/4 )5/2 (n-I/4)"/2  66

-o 00

w = 47rRC0 D 57193 + - 1 6-
Iz=0 A AB 2 2  I(n/4) (nI/4)3/2 3.6-37

For the determination of the infinite summation in equation 3.6-37,

the Euler-Maclaurin expansion is invaluable. This expansion is given by

4Miller (Q) as
f(x) = f()d+ 1 [Dk -  f(z) - Dk l f(a)] + R(m) 3.6-38

x=a k=a

where Bk Bernoulli Numbers of the first kind

k-l dk - I
D f(a) = - f(x)

dx - xa

R(m)->0 as m-->Zo

in the case of z approaching infinity, with f(x) = - where
(x-k)n

n is positive, 2m-i

Bk Dk -  
f(z)

k=a

Fis zero, and the above expansion can be written

0303

f(x) = f( d - k "  f(a) 3.6-39

x=a k=l

1
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Therefore the first term of the infinite summation in equation 3.6-37

can be written as

ni/4) -= (n./4) n _ k n 5/2 3.6-40

n=21('1/4) (-1/4)(n-1/4) =2n=2 1

IThe Bernoulli numbers of the first kind are given in Miller (7) as

1

BI = 1
B2  6

B =B =B .... B2 k+l = 0
3 5 72k1

1
B -I

16 = 42

etc.

00 Equation 3.6-40 becomes

o 1 2 1 F B 1 B2 5  1Li 4~=21 (n-I/4)5/2 3 (n-i/4)3/2 1 (nI/4)5/2 22 (n7/4)7/ 2

n=21

B3 5 7 1 B4 5-7.9 1

+ 3.2 2 2 (n-1/4)9/2 4-3.2 2-2-2 (n-1/4)I1/2

B 5 5'7-9-1l 1 -B 6 5.7.9.11.13 1
5.4.3.2 2-2-2-2 (n-1/4)ii/2 (n-1/4) n21

3.6-41

if The expansion on the left hand side of-the equation results in

an alternating series which converges very rapidly. Evaluating equation

13.6-41 at n = 21 results in,
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CO

0.00708 + 5 _1

n=21 (n-/4) 5 2  
L (20.75)-/2 612 2 (20.75)7/2

1 5.7-9 1 +
30"-4-3-2,2-2 (20.75)11/2 - +-

= 0.00708 + 0.000256 = 0.00734 3.6-42

ii Similarly,

2 m- 1
031 B k k-i 1

3/2 =  )3/2 dn - T 3/2 3.6-43

k1F l n=21
1 B B9 11(n-1/4)3/2 -2 n 21/4 1 (n-1/4)3/2 (3/2) (n-1/4)5/2 3.6-44

n=2 002

1 = 0.439 + 0.005 = 0.444 3.6-45

i] /§ (n-1/4)I]n=21 0

1 1 L 39487 3.6-46

n~ (n-1/4)3/2

1 hence equation 3.6-36 becomes

J 00
W 47TrCA DAB 0.57193 + 2 - (0.00734 + 1.39487) 3.6-47

z=0 27T1398)

W = 4 RCO D (0.64296) = 2.57 7T R D C3.6-48
170 A DAB DAB CA 364I Iz=0

IIf we rewrite equation 3.6-25 as

z F4RC A sin (jR) cos (a R) 1
1~ 4 (A B aj~R)3J1 (aR) (a j R) J 1%MR)]00 (ajz) sin (gjR) cos (ai)

e(J
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it can be seen that the total flow to the walls of the pore is equal

Jto the flow through the gas-liquid interface only as z approaches

infinity, i.e., when e- Jz approaches zero, the flow through the

I gas-liquid interface equals W/ 0I

Although the first summation in equation 3.6-27 converged so

slowly that the application Euler-Maclaurin expansion was necessary

to perform tae summation, the second summation converged very rapidly
- z).

because of the term e I . This second summation was carried out

', term by term, and for values of z greater than on pore radius, four

terms were sufficient to represent the infinite summation.

Values of the flow that reach the Dore walls were calculated

for different values of z, and the results are shown in Figure 2.

It can be seen that when z is equal to 2R (electrolyte penetration

of one pore diameter) 99.3% of the flow through the interface reaches

the inside of the pore wall wettcd with electrolyte. This is very

A significant for porous gas diffusion electrodes for it means that

a pore penetration by the electrolyte of one pore diameter is

sufficient to make the semi-infinite cylinder the effective model.

3.7 Maximum Current Density

The flow of gas through the gas phase and through the gas-liquid

interface are equal because thaey are in series. Since the area that

flux is based on is taken to be the 6ame, viz., the cross-sectioned

area of the pore, the flux through the gas phase can be equated to



System: Oxygen Diffusing Through Water

0 O _ /J

0.6 7

0.4

I7

*1 0 IR 22 3R

.1
Figure 2. Fraction of Caz Fi:w Throwgh Gas-Liquid Interface

Rachingj Pork Walls

I
I
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Algebraic manipulation of equation 3.7-6 results in

5.58 x 1011Pi .R2[1.29 x 10' R (l+Pi) + 12.1 3.7-7

2..Under the restriction that P.i and R be related as in equation

3.7-7, we obtain a maximum flux to the pore walls (N) =0 at

an optimum radius of 2.15 x 10- 6 cm. The interfacial pressure

corresponding to this radius was computed to be 0.51 atm. The

maximum flux to the pore walls under these conditions is, from

equation 3.7-4,

(NAR)max z=0 = 1.32 x 10- 5 moles/cm 2 .sec.

Therefore, the maximum current density which can be supported by

mass transfer to a reactive site is (assuming 4 electrons per mole-

cule of oxygen)
(i) (NA ml 3.86 x 0
m max =ARmax z= cm 2 sec. mo

= 5.1amps
-2

cm.
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4.0 DISCUSSION OF RESULTS

The value for the maximum current density predicted by this

model is approximately three times greater than the value obtained

by Ariet and Distefano under the assumption of no electrolyte pene-

tration in the pore (semi-infinite annulus) (1). This higher value

may be explained by the fact that the liquid phase diffusion path

is shorter when the electrolyte penetrates into the pore than when

the gas has to diffuse into the liquid outside the electrode to get

to the annular reactive area. Furthermore, it is conventional to

calculate the current density based on the geometric area of the

electrode. The area considered in this case is only the cross-

sectional area of the pore whereas in the case of no penetration

the area is the cross-sectional area of the pore plus the annular

reactive area.

One of the major assumptions of this model is that the liquid

penetrates the pore to such an extent that the pore can be considered

a semi-infinite cylinder. An important question immediately arises:

ti What depth of penetration relative to the pore radius is necessary

to constitute a semi-infinite cylinder? From Figure 2 it can be

-seen that at an electrolyte penetration of one pore radius 92.4 per

I cent of the flow through the gas-liquid interface reacts on the

pore wall. At a penetration of only one pore diameter, 99.3 per cent

Iof this flow reacts on the pore wall. It was concluded from these

results that any penetration depth greater than one pore diameter

is sufficient to constitute a semi-infinite cylinder.

122
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The assumption that the presence of the reaction products on

the reactive sites does not alter the diffusion rates of the oxygen

in the liquid will produce a higher value for the current density

than the true physical model in which these reaction products will

probably be a serious obstacle to the diffusion of oxygen in the

liquid inside the pore. It should be obvious that as the wets7 •

proofing agent is oxidized and the liquid penetrates in a pore

whose inner walls are not activated, the diffusion rate of the oxygen

Ito get to a reactive site will be much slower because the gas will

have to diffuse a longer distance in the liquid where the diffusion

Icoefficient is much lower than in the gas phase. This will result

in a decrease in the current density. This effect is commonly

IIreferred to as the "drowning" of the electrode. When the inner

walls of the pore are activated, the penetration of the liquid in

the pore will produce an increase in the current density according

4to the results of this study. This seems to indicate that it is

desirable to activate the inner pore walls of porous electrodes

rather than to activate only the outer surface of the electrodes.

I

i
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NOMENCLATURE

A Represents component A in the binary system of A and B

B Represents component B in the binary system of A and B

B Bernoulli numbers of the first kind of order k
k

CA Concentration of component A at any point (r,z), mol/cm.3

C Concentration of component A at any point (r,z), mol/cm.

A

JC Besselnfuntion of cmoth first kiny oin o rder , mo/

03
C Concentration of component A at the point (0,0), molrcm.

AB

DAB DiffsivtyofA.hrugsBec./.

H Henry's Law constant, atm.

J. Bessel function of the first kind of order j

L Length of pore not penetrated by the liquid

*M Molecular weight of the gas

n Defined by equation 3.6-29

N Molar flux of component A in the r-direction at any point (r,z),

NAr moles/cm.2 sec.

NAz Total molar flux of component A to the reactive pore site in
=0 the region z=0 to z=z

NAz Molar flux of compoiient A in the z-direction at any point (r,z),
moles/cm.2sec.

NAzi Total molar flux of component A through the gas-liquid interface,
mol/cm.2sec.

N Molar flux of component A in the gas-phase area of the inside

NAzPG of the pore, mol/cm.2 sec.

Pb + i
P Average pressure in the pore, 2 , atm.

Pb Bulk gas pressure, atm

P Pi Gas-liquid interfacial pressure, atm
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Denotes radial direction, cm

R Radius of the pore, cm

R' Gas constant in appropriate units

t Denotes time, sec

T Denotes temperature, OK

AWJz Total moles of flow to the pore walls in the region z=O to
z=z, moles/sec.

x Defined by equation 3.6-29n

z Denotes axial direction, cm

.SUBSCRIPTS

A Denotes the component A in the binary mixture of A and B

B Denotes the component B in the binary mixture of A and B

b Denotes. the bulk gas

G Denotes the gas

i Denotes the gas-liquid interface

j Denotes the jth root of the first order Bessel function of
the first kind, Jl(ajR) = 0

k Denotes the kth.order Bernoulli number of the first kind, Bk

n Denotes the nth root of the first order Bessel function of
the first kind, Jl(xn) = 0

P Denotes the pore

R Denotes the reactive pore area

r Denotes the radial direction

z Denotes the axial direction
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GREEK SYMBOLS

j 5 Constant defined by Carman (3)

71 Viscosity of the gas, poise

aj Defined by equation 3.6-5

p partial pressure of oxygen, atm

Ai
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ADDENDUM I

Computation of Concentration Profiles

Concentration profiles as a function of r/R with z/R as a

parameter are shown in Figure 3. The values of C /C 0 were cal-
A A

culated from a truncated form of the infinite series in equation

(3). This equation resulted in a convergent series containing

alternating terms. In all cases, six or seven terms were sufficient

to insure that the truncated series was an adequate representation

of the infinite series.

28
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Figure 3. Plot of C /Co Versus rIR with zIR as a Paramneter
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ADDENDUM II

The System Air-Water

It was shown in a previous report* that for an air-water system,

the oxygen flow through a stagnant layer of nitrogen in the pore can

be calculated using the partial pressure differential of oxygen as

the driving force. When the bulk gas pressure of air is Pb = 1.0 atm

the bulk partial pressure of oxygen is approximately Pb = 0.2 atm.

If all other conditions are identical, and the contribution of Poiseuille

flow is neglected, equation 3.7-5 becomes

NAzPG = 12.05 (0.2 - pi) (la)

Equating equations 3.7-4 and (la) results in

12.05 (0.2 - pi) 5.58 x l0
- 1l Pi (2a)

Under the constraint of equation (2a), the optimum pore radius is

2.15 x 10- 6 cm, with a corresponding interf'cial partial pressure

Pi = 0.1 atm. Under these conditions the maximum current density

obtained is 1.0 amp/cm
2.

* Ariet, M. and Distefano, G.P., Summary Report No. 8, University! of Florida, March 15, 1963.
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